
High Performance Computing in Journalism
Leon Yin

leonyin.org

Leon Yin is an award-winning journalist at Bloomberg News. He builds datasets and
develops methods to investigate technology’s impact on society.

One surprising (or not so surprising) application of high performance computing is
journalism. Investigative journalism is a type of journalism that focuses on digging
deep into an impactful, longer-term topic involving titans of industry, government
institutions, and the powerful.

Investigative reporters rely on “shoe leather” reporting techniques to speak directly
with affected individuals, as well as Freedom of Information requests to review
government documents. Increasingly, reporters are embracing the affordances of
technology to collate disparate data sources to unearth evidence of harm at scale.

Still Loading
One of America’s most-notable monopolies was AT&T Bell Labs. Between 1913 and
the 1980s, Bell Labs owned practically every telephone line connecting households
across the United States. In 1982, AT&T was ordered by the US Department of Justice
to split up its monopoly into several independent regional companies. These “Baby
Bells” were subsequently acquired, merged, and rebranded as Verizon, AT&T, and
CenturyLink (now called Lumen Technologies).

In addition to being mobile carriers and offering landline services, these three com‐
panies are also major internet service providers. In The Markup’s award-winning
series “Still Loading”, we found that AT&T, Verizon, and CenturyLink disproportion‐
ately offered slow internet speeds to low-income, non-White neighborhoods for the
same price as fast fiber in other parts of town.

Our investigation was the first of its kind to show the scale of digital redlining
practices in the United States. Across the 38 major cities served by AT&T, Verizon,
and CenturyLink, we found disparities based on income or race in all but two cities.
Data from our investigation was used by local newsrooms to report on internet
disparities across the country, cited by policymakers to combat digital discrimination,
and used as teaching materials for data journalists.

High Performance Computing in Journalism | 435

Slow Speeds and Quick Iteration
When you’re shopping around for internet deals, you may have visited a web provid‐
er’s website and typed in your home address to see what plans they might have for
you. Our data collection effort attempted to replicate this process for over a million
addresses.

Our methodology was inspired by an academic article by researchers from Prince‐
ton University that found discrepancies between what internet service providers
self-reported to the Federal Communications Commission (FCC) and what they
advertised to customers. The researchers built scrapers for several different internet
service providers’ websites to collect internet offers. Although their code was public,
it no longer worked, as many of the sites had changed their user interface.

This is a common occurrence, as scrapers break all the time. To save time, I try to
develop a quick proof of concept analysis before investing too many resources into
an investigation. It’s advantageous to test and eliminate potential projects quickly; this
allows us to gauge the potential of many stories and decide how to proceed. During
this step it’s key to build a data pipeline that is reasonably functionable and select a
small sample to indicate potential patterns.

As a reporter, this also means that I interview experts to get up to speed. For this
project I contacted an author from the paper to discuss their findings. I asked
whether a particular provider was egregious, and where. Repetition is often a good
starting place, as it provides a blueprint to reference and build off of.

Researchers were quick to point to AT&T as an internet service provider with many
discrepancies, especially in the city of Green Bay, Wisconsin.

This gave me direction for a scraper to start building. When I need to build a
scraper I go to the website and get intimate with the user interface and the workflow
necessary to manually retrieve whatever information I’m after.

The user interface for AT&T’s internet service lookup website involved a multipage
process of filling in an address, filling in an apartment number, and then selecting
whether you’re shopping for Fiber or DSL.

I noticed that an HTTP request to a server occurs for each of these steps while I
was listening for network requests in my browser’s developer tools. I typically opt for
finding such undocumented APIs for web scrapers; however, because the process was
multiple steps with multiple APIs, I was unable to successfully combine each step to
look up the internet plans for a given address.

Instead of immediately figuring out these APIs, I quickly developed a Selenium
scraper to fill in these steps. Selenium and other such browser automation tools (such
as Puppeteer and Playwright) are great when you need to interact with rendered
elements on a page as a user would.

436 | Chapter 13: Lessons from the Field

It’s also something that is easy to debug and deploy locally on a PC. For a few
thousand random addresses from Green Bay, the process was painfully slow. This is
partially because browser automation loads and renders all the elements and scripts
on a page, and also the website deploys some sort of traffic control that will throttle
requests from the same computer (called IP blocking). Also, in order to do this
Selenium needs to run a full browser instance, which takes quite a lot of resources.

Even with multiprocessing to open 9 Selenium browsers to process 9 addresses
in parallel, the process was slow. It took two weeks to collect 4,000 addresses. I
initially viewed this as a nonstarter for anything more ambitious involving multiple
companies or cities.

But I am a reporter first, and an engineer later. Why optimize code for a story that
isn’t spicy? However, looking at the data suggested we had an important story to
report out.

After parsing and cleaning the scraped data, we plotted each internet plan on a map
in Figure 13-1, and immediately we saw clusters of fast speeds above 100 Mbps
(green) and slow speeds (orange) below broadband benchmarks.

Figure 13-1. AT&T’s internet speeds across a sample of Green Bay, Wisconsin, addresses,
mapped using Kepler.GL

High Performance Computing in Journalism | 437

Geography is correlated with income and other socioeconomic factors. Every year,
the Census Bureau conducts the American Community Survey of a select sample
of the population and uses that data to estimate the median household income and
racial makeup of every city in the United States.

We merged the median household income to each internet plan to create Figure 13-2,
and using an extremely rough categorization system for income, we found AT&T was
more likely to offer low-income residents slow speeds, and less likely to offer fast
speeds compared to wealthier areas.

Figure 13-2. Normalized bar charts of AT&T internet plans by median household
income

Despite taking two weeks to build the initial dataset, these findings immediately told
us we have a story about inequity. The strangest part was that all these internet speeds
were quoted at $55 a month.

We soon found a report by the internet advocacy group National Digital Inclusion
Alliance (NDIA), which accused AT&T and Verizon of charging the same base
price for a variety of speeds based on marketing materials, which they coined “tier
flattening.”

This made us wonder: How many companies practiced tier flattening, and how many
states or cities did they operate in? How could we collect more data if the initial
process was so slow?

We manually confirmed that AT&T, Verizon, CenturyLink, and EarthLink all prac‐
ticed the same pricing system and that they served 45 states and Washington, DC.

438 | Chapter 13: Lessons from the Field

Back-of-the-napkin math that limited our universe to a 10% sample of the most
populous city in each of these states yielded 1.6 million addresses. At the current rate,
that would have taken almost 15 years to finish.

Although we initially used Selenium to scrape internet plans, 15 years is not a reason‐
able timeline. Of course, when “interactivity” is a requirement, browser automation is
a clear winner that is easy to program and debug.

In our initial appraisal of AT&T’s website, we saw APIs running to serve the informa‐
tion in the service lookup tool as well as return internet plans via API calls. Unlocking
this route would allow us the speed and scale we needed, and a quick inspection
of each other provider’s website revealed almost identical lookup tools for internet
plans.

How would we keep track of the state between each API call? You can’t list plans
without reference to the input address, and no clear parameter or header keeps track
of this. Luckily, my data editor Jeremy Singer-Vine introduced me to using a session
object, which does exactly what we need: keep track of headers and cookies across
requests.

I used a session to string together a series of API calls to simulate the workflow
for listing internet plans for an address, which I repeated in four scrapers for each
internet provider. An example of this can be seen in Example 13-1, where I collect
internet plans from AT&T using multiple API requests and a single requests session.

Example 13-1. Getting internet plans synchronously

from requests import Session

def get_internet_plans(address, proxy):
 """
 Collect internet plans for one `address`.
 `session` persists cookies, `proxy` is for routing requests
 """
 with requests.Session() as session:
 session.get(url='att.com/authenticate', proxies=proxy)
 address_id = session.get(
 url='att.com/autocomplete',
 proxies=proxy,
 json={"address": address}
)
 plans = session.post(
 url='att/com/plans',
 proxies=proxy,
 json={'addressId': address_id}
)
 return plans.json()

High Performance Computing in Journalism | 439

This is already significantly faster than what we had accomplished with Selenium.
But API calls are scalable in that they can be done either in parallel or asynchro‐
nously. With a few changes, the scraper function can be retrofitted to be called
asynchronously while choreographing each step (API call) to occur in sequence
(Example 13-2).

Example 13-2. Getting internet plans asynchronously

import aiohttp

async def get_internet_plans(address, proxy):
 """
 Collect internet plans for one `address`.
 `session` persists cookies, `proxy` is for routing requests
 """
 async with aiohttp.ClientSession() as session:
 await session.get(url='att.com/authenticate', proxies=proxy)
 address_id = await session.get(
 url='att.com/autocomplete',
 proxies=proxy,
 json={"address": address}
)
 plans = await session.post(
 url='att/com/plans',
 proxies=proxy,
 json={'addressId': address_id}
)
 return plans.json()

One of the issues that Princeton researchers warned us about was rate limiting and IP
blocking. We used a residential IP address rotator that routed our requests through
someone else’s computer. We used the same provider that the Princeton researchers
used. IP routing is a last resort that you should use responsibly. We listened to server
status codes and scaled accordingly so as not to crash any websites.

Using undocumented APIs and asynchronous programming, we were able to collect
internet plans for 300,000 addresses daily, whereas a parallelized Selenium scraper
could only collect around 300 addresses a day. This process of developing these new
scrapers and optimizing them took about one week.

Unlocking technical barriers allowed us to be ambitious, showing the scale of dis‐
parities in an unfair pricing system for an essential commodity. We found that
neighborhoods that were offered the worst deals had lower median incomes in 9 out
of 10 cities in our analysis. In two-thirds of the cities where we had enough data to
compare, the providers gave the worst offers to the neighborhoods with the most
non-White residents. Internet access is not considered a utility in the United States
and thus is not regulated as strongly as electricity or water.

440 | Chapter 13: Lessons from the Field

But before we had our “Big Story,” we were quick, iterative, and pragmatic. We read
the prior art and spoke with people to narrow down the complexity. Early tests
showed great promise, while thoughtful engineering and high-performance comput‐
ing provided a full solution that allowed us to reach the potential that this impactful
topic deserves.

Data from our story was used to publish original reporting from nine local newsrooms
and cited by Los Angeles lawmakers who passed the nation’s first ruling against digital
discrimination. The series was honored with several journalism awards, including
the Philip Meyer Journalism Award from Investigative Reporters and Editors, which
recognizes the best use of social science research methods in journalism.

Although these lessons are from investigative journalism, I hope that these same
principles can be applied to the projects that are important to you.

Read more at:

• “Dollars to Megabits, You May Be Paying 400 Times as Much as Your Neighbor•
for Internet Service”

• “How We Uncovered Disparities in Internet Deals”•
• “How We Uncovered Disparities in Internet Deals: GitHub Code and Data•

Repository”

Lessons from the Field of Cyber Reinsurance
James Poynter

linkedin.com/in/james-poynter-0b295375

James Poynter is employed as a Global Data Science Lead at reinsurance broker Gal‐
lagher Re. He has a track record of applying data and technology to solve commercial
(re)insurance risk and underwriting problems.

As a data scientist, when I think of high performance, I like to think in terms of
data flows—I dream of a fast, smooth, and efficient flow of data through a system
of robust machine learning and data pipelines. Each ML system comprises a series
of steps, and each step involves inputs, transformation, and outputs, with machine
learning (ML) model training and inference being just another transformation step
(albeit a complex one).

When it comes to unlocking business value from data science and machine learning
systems, data must come in and high-quality actionable insights and information

Lessons from the Field of Cyber Reinsurance | 441

